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FOREWORD

The work reported herein was initiated in Contract NAS8-28517

under NASA Control No. PR- M- 28517, under technical monitors

Daniel W. Gates (Principal) S&E-SSL-TT and Tommy C. Bannister

(Alternate) S&E-SSL-TR, of NASA Marshall Space Flight Center to

Nevada Engineering and Technology Corporation, Long Beach, Calif.

This report describes progress in developing, through mathe-

matical expressions, values for the parameters which apparently

determine the values of atomic density, melting point, and prin-

cipal elastic constant for the alkali halides. This necessarily

required the review and refinement of these data for the mono-

halides in general and for LiH. A more sensitive and dimensionless

expression of the mass factor appears to have promise and a still

u ~ more sensitive one is suggested for future study. A periodicity

factor based on inert gas core configuration has been suggested

to replace the atomic number previously used.

The method applied during this exploratory study involves

the investigation of the derived value for the atomic density and

for at least one other measured property for a given subgroup,

first of elements, then of the equivalent compounds of an element.

o In this report are such relations for the alkali halides in which

o the atomic masses of metal and halide are most nearly equal.

It; The objective of this project has been, through constant

iE ( striving for exact agreement with measured properties, to refine

· and broaden the atomic density concept and its application to the

prediction of property values and the understanding of materials

.-. behavior. Wherever a novel expression or relation has been found,

W an attempt has been made to confirm or deny it by example. Never-

theless, the relatively small number of elements and compounds so

m ~ far tested, and the possibility that some physical data are in

o 4 error, suggests the precautionary advice that some of the rela-

tions may be fortuitous or in error.

S. W. Bradstreet, Consultant
, z This report covers work Principal Investigator
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ABSTRACT

The discovery that a somewhat crude "mass factor" appears

capable of eliminating the last few percent of error in relating the

measured properties of atomic density, melting point, and another

property of elemental metals according to their "natural" isotopic

content has been reported. Since all compounds represent far

larger differences in atomic mass, it was hoped that this factor

might be suitable for studying a selected number of them. The

group chosen comprises the monohalides.

The expressions obtained showed the factor mf to be too

sluggish and to be dimensionally linked with the atomic weight. A

simple dimensionless factor tested is f = (WX - WM)/ W which

served to simplify the derived empirical expressions and showed

that in these compounds, the mass-momentum 'effect is about twice

as great for the compounds in which the metal is lighter than the

halogen as for the compounds in which the situation is reversed.

Using the factor f, the compounds LiH, NaF, KC1, RbBr, and

CsI were used to show that the atomic number Z does not serve well

as the "yardstick" parameter, and the factor n, based upon the

principal quantum number of the inert gas shell most nearly re-

presenting that of the mean of cation and anion has been tested.

With either f or a still more sensitive factor in which W is re-

placed by the atomic mass of the lighter constituent, the calcu-

lated value for LiH is a credible one.

With the proposed work nearly completed, it is concluded

that the atomic density is indeed a practical, accurate, and tract-

able characterizing parameter, without which it is improbable that

the mass factor or the periodicity factor could so quickly be de-

veloped and tested.

Recommendations are made for work to be undertaken in the

future. This includes, in addition to broadening and refining the

atomic density and the property to which it may relate, a brief

plan for a study to settle upon the proper expression for pre-

computing both factors.
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INTRODUCTION

The atomic density of a substance is no more than a count of the

number of atoms in a unit volume of it. For an element, N = ( *.Av)/W,

where Q is the real density, Av is Avogadro's number, and W is the

atomic weight of that element. The atomic density is thus inversely

linear to the familiar atomic volume often used in solid-state physics,

but it has the advantage of being more tractable in such Law of Mixtures

computations as may be needed for mixtures or compounds.

In a compound, the "atom" is fictional in that represents the

chemical composition and hence all elements present; the atom of NaCl

thus has a mass equal to half the molecular, weight of NaCl. One sees that

any substance can be characterized by a value of N provided its real den-

sity and chemical composition are known. In this work, the convenient

unit for atomic density is 1022 atoms/cc, so that values of N customarily

lie, in solids, from values slightly below 1 (for cesium) to 17.6 for

diamond. Since N is derived from density values it is of course changed

by changes in temperature and pressure; the values used thus far result

from densities measured at (or corrected to) 298.1K and one atmosphere.

The existence of N atoms/cc reflects the existence of N bondycc

among them, so mathematical expressions can be derived in which this

"bond density" can be separated from the factors which determine bond

"strength". An intriguing result of the work has been the discovery that

N can itself be regarded as a characteristic property and related to

such parameters at the atomic number Z and the atomic weight W; in the

course of this development it was observed that these relations among

metal subgroups were more accurate when the number and masses of their

isotopes are taken into account as well. On the premise that additional

energy can be absorbed by a crystal if two or more isotopes are present

in it, the concept of the "mass factor" has been cursorily tested and

shown to permit, both for melting points and for N values, expressions

to be developed for those elemental subgroups having similar bonding

(valence) electrons. The finding that boron reasonably obeys such an

expression derived from Sc, Y, La, and Ac, and that graphite similarly

accords with Ti, Zr, and Hf has been followed by empirical accordance

of Na with Cu, Ag, and Au and of Mg with Zn, Cd, and Hg.

These modest modifications of the Periodic Table arise, of course,



among real crystals of the same substance. When it was observed,

however, that the elastic constants of the body-centered cubic

transition metals can be correlated within * one percent from

their MP and N values it appeared to be possible that the effect

of mass-momentum in lattice vibration was perhaps more influential

than had been supposed. In the elemental crystal of K, for example,

one presumes attraction through valence electron interaction or

transfer, the atoms thus being brought together so closely that

orbital overlap began to occur. But in comparison to Na and Rb,

this force of repulsion seems unaccountably small, and the density

of K is lower than that of Na. An odd and surely related fact

with the alkali halides: the K salts are the least dense for any

one halogen, the chlorides are least dense for any one metal, and

KC1 is lowest in density for the series. Since the ratio W/Z is

lowest for K and C1 it appeared at least possible that to the early

idea that K is larger than its mass would indicate,the obversei-

that the K atom appears large because it is light,- ought to be

added. An intuitive mechanism might well be the simple observation

that for a given energy content, a light atom must Kibrate over a

larger amplitude, and hence appear to be larger since overlap re-

pulsion would be exerted on it by but a few neighbors at a time,

than would a heavier one of the same electronic configuration, and

brief assessment of this effect in a few light isotopes and for

most elements disobeying the rule of Dulong and Petit. The studies

reported earlier not only descried this mass-momentum effect on N,

0298, and MP but showed that it is negligible for monoisotopes,

smaller for heavy metals than light ones, but effective enough to

produce measurable change even when the element contains only a

few percent of an isotope differing from the dominant one by 2 awu.

It appeared that since the whole of the mass effect wY Wfyz

can be regarded as the "effective" mass, the two could somehow be

precombined, with the following objectives:

With but three unknowns, three subgroup members can be used

to derive them and the fourth used as a check on validity,

Specific questions regarding apparent exceptions can be

answered by introduction of other candidate terms.

At the same time, the method employed can be illustrated for

future computer studies in which the constrictions placed on the

logarithms of a quantity which may in some cases be negative can be

avoided.
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In the first Report, preliminary data regarding the melting points

and atomic densities of the alkali metal halides were used to show that

those in which the atomic masses of the two components were most nearly

equal (called the "equipoise compounds)1 were clearly dominated by the

N and MP values of the metals themselves. It was decided, therefore, to

reexamine the sixteen I-A halides (all but three of which form the rock-

salt structure) and study, as well, the fourteen I-B monohalides, most of

which exhibit cubic or slightly deformed halite structures and one of

which (AgI) forms the as-precipitated hexagonal structure, transforming

irreversibly into a denser structure at an elevated temperature. (Note

that this behavior is quite different from the lanthanons, the majority

of which form bcc crystals only at elevated temperatures). It was hoped

that data would be sufficient to develop and test a number of candidate

versions for the factor mf.

THE MONOHALIDES: STUDY OF ATOMIC DENSITY AND MELTING POINT VALUES

A basic subsumption of this work has been that the temperature

threshold of melting is (except where incongruent) an accurate and sen-

sitive measure of the product of the bond strength and bond density in

a solid. Since N is a measure of bond density (and can be related in a

subgroup to Z, W, and mf) one can hope to develop a combined relation

which will illuminate the influence of any single parameter upon bond

strength.

Table 1 shows the pertinent data. Each column will be separately

discussed.

The values of N have been reviewed and these data supersede those

used in the earlier Report. LiF is by far the highest and RbI lowest

for the I-A halides. Note that N for the bcc CsCl is almost identical

with that of CsF. In every metal grouping, the decrease in N with in- 

creasing Z is most notable between fluoride and chloride when there is

no change in structure.

The packing efficiencies of those monohalides for which interatomic

distances are readily available suffice to show (a) that the majority of

salts lie close to but slightly below the ideal PE (52.37%) for the simple

cubic structure which is the result of presuming "atoms" which have radii

which are the sums of the half-radii of metal and halogen. Outstandingly

different are overpacked LiI and underpacked CsF; NaF is also slightly

overpacked.

The RN values; are inversely related to the cube root of N. Thus

while CsF and CsC1 are almost identical, the RN values are quite different



by reason of the difference in coordination number and packing efficiency.

Since it has heretofore been assumed that this difference is the result of

changes in bond strength it is also subsumed that those changes will best

relate to material behavior if no correction for ideality is initially made.

The "atomic" number Z for these compounds is simply the average value;

one observes simple repetitions among them. It has been noted that the use

of Z as a simple counter in these empirical expressions is not reflective

either of elements in the short series nor of post-lanthanide elements, be-

cause the principal changes in valence do not happen to occur at recurring

values of Z except for the region 14 Z 58, and since Li, Na, and F lie out-

side this zone there will naturally appear to be unreconcilable differences

between these elements (and their compounds) and the remainder.

To clarify this point (discussed briefly and inconclusively in earlier

reports) let us take some number n which identifies in the simplest possible

way the periodicitv of recurrence of a nominal valence of one for the 1-A

and 1-B metals. From n = (Z-1)/18 or (Z-2)/18 one obtains values for nM of:

Li Na K Cu Rb Ag Cs Au 6 5 Au

nM .111 .555 1.0 1.555 2.0 2.555 3.0 4.333 3.550 or
.0555 .50 .9444 1.50 1.944 2.50 2.944 4.278 3.50

The relations are arithmetically simple and can serve very well for

relative purposes. Using the first formula, hX for F, Cl, Br, and I are

found to be 0.555, 1.0, 2.0, and 3.0 when (Z+1) is used, and the value for

Z for each monohalide derives from: 1;8 (nM + nX)/2

But the use of Z (or of the n values derived above) can be seen from

the table to serve poorly the role of periodicity; the arithmetic or geo-

metric change in Z with a given metal, least between fluoride and chloride,

is reflected by the largest change in N and elastic modulus throughout,

but where the MP values of the Li salts are 256K apart, those of the K salts

are, for a similar change in Z separated only by 105K.

No attempt will be made here to develop a more representative yard-

stick than Z, but it is hoped that this simple analysis will provide a

credible approach for doingthis in the future.

The values of W/Z, from which 2 has been subtracted so that they can

be seen more clearly, reflect not only the increasing nucleon/proton ratios

of the heavier elements but the pronounced minimum in this ratio occurring

with K, C1, and their compounds. As stated in the last report, the simple

ratio W/Z cannot be safely used to characterize an element or its compounds

in terms of observed properties because x and y are not numerically equal.

The data are included here for the use of those who would nevertheless use
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Table 1

Pertinent Data for the Monohalide Salts-

N PE RN Z (W/Z)-2 W mf f MP E n

LiF 12.236 51.78 1.004 6 0.1615 12.969 3.4727 0.92986'1143 70.35 0.5
LiC1 5.875 51.97 1.286 10 .1196 21.196 5.3398 1.3452' 887 26.46 1.0
LiBr 4.804 52.14 1.375 19 .2855 43.424 8.5422 1.6804' 820 20,05 1.5
LiI 3.654 54.39 1.506 28 .3900 66.921 10.953 1.79261 719 13.69 2.0

NaF 8.004 53.49 1.161 10 .0994 20.991 1.9978 .19015 1235 26.93 1.0
NaCl 4.462 52.06 1.410 14 .0872 29.221 3.5303 .42651'1074 12.81 1.5
NaBr 3.760 52.15 1.493 23 .2369 51.449 7.5445 1.1063' 1028 10.17 2.0
NaI 2.946 52.03 1.619 32 .3421 74.950 10.194 1.3864' 924 7.37 2.5

KF 5.141 51.29 1.345 14 .0750 29.050 4.4837 .69203 1154 12.90 1.5
KC1 3.205 51.90 1.574 18 .0710 37.277 1.9102 .09789 1049 6.38 2.0
KBr 2.783 52.03 1.650 27 .2040 59.506 6.3880 .6858' 1003 5.16 2.5
KI 2.272 52.15 1.766 36 .3057 83.003 9.3700 1.0578' 996 3.79 3.0

RbF 4.335 51.94 1.423 23 .2710 52.234 t8.1530 1.2726 1032 8.90 2.0
RbCl 2.749 50.33 1.657 27 .2394 60.461- 7.072 .8273 988 4.51 2.5
RbBr 2.440 51.42 1.724 36 .2970 82.690 2.358 .06725 955 3.43 3.0
RbI 2.013 51.80 1.838 45 .3598 106.190 6.437 .39019' 915 2.70 3.5

CsF 2.843 41.41 1.638 32 .3735 75.952 10.673 1.4997 957 2.5
CsCl 2.841 67.11 1.788 36 .3384 84.179 9.8718 1.1577 919 3.0
CsBr 2.490 66.74 1.869 45 .3644 106.410 7.280 .49803 909 3.5
CsI 2.091 67.37 1.981 54 .4055 129.904 2.450 .04619 894 4.0

at/cc % ~ awu awu * OK GPa *

CuF 19 .1721 41.269 6.6739 1.0793 1181
CuCl 5.0372 23 .1520 49.496 5.0372 .56746 704
CuBr 4.1813 32 .1735 71.724 4.0459 .22822' 771
CuI 3.5544 41 .3255 95.222 7.9600 .66543' 878

AgF 5.5547 28 .2655 63.434 9.4272 1.4010 708
AgCl 4.6725 32 .2394 71.661 8.5098 1.01055 728
AgBr 4.1519 41 .2900 93.889 5.2880 .29781 705
AgI(0)3.0832 50 .3477 117.387 4.3630 .16215' 831

AuF 44 .4541 107.983 13.340 1.64812
AuC1 3.8348 48 .4210 116.210 12.709 1.3898 443 d.
AuBr 3.4365 57 .4287 138.438 10.819 .84556 388 d.
AuI 3.0681 66 .4536 161.935 8.370 .43266 394 d.

* see text for meaning of f and n
CsCl, CsBr, and CsI display a body-centered cubic structure. Mlost of

the remaining salts exhibit the halite structure which, by reason of the
reduction of a half-molecule to an atom, becomes simple cubic.

As-precipitated AgI is hexagonal and less dense than the cubic -form;
if it is used, its N value is 2.916 x 1022 atoms/cc.

Salts showing a marked value of f are those in which the metal atom
is lighter than the halogen atom.

Underlined values will be discussed.

The data in this table supersede those of p 16, Report No. 1
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this factor or a variant of it. That it has been insufficiently

applicable in accurate data analyses lies largely in the simple fact

that Z, the atomic number, cannot serve as a yardstick among members

of a subgroup even of elements, since such a yardstick implies that

all (or a fixed proportion) of the electrons present take part in the

bonding process.

The values of W, however, are usually trustworthy, although some

of the lighter elements, particularly Li, may deviate appreciably from

"accepted" values. For the compounds, the W values a~re obtained simply

using the Law of Mixtures and assuming ideal stoichiometry.

The mf values, discussed in the previous report and satisfactory

for polyisotopic elements, were tested here in a preliminary study of

the mathematical expressions relating MP and N with Z, W, and mf. It

was hoped that such expressions might be comparable.

In all cases the general expression in logarithmic terms is:

Log P = x Log Z + y Log W + yz Log mf + Log C , where P

is the property E, MP, or N . The required four salts in each subgroup

were obtained by regarding Na as a I-B element; in no instance was the

Na salt consonant with values obtained from the Li, Rb, K, and Cs ha-

lides.

It is concomitant with the finding(that Na cannot in this way be

included with the other alkali metals)to conclude that neither can F

be thus included with the heavier halogens. Thus no subgroup of a given

metal containsmore than three salts. Accordingly, grouping was done for

each halogen, with the assumption that the values for fluorides would

not show a discernible trend when compared with chloride, bromide, and

iodide groups. That this is clearly true can be seen from Table 2.

That the ratio -x/(y+yz) should be slightly larger than unity

and increase with the heavier halides is simply a reflection of the

average W/Z values.,

The values of mf contain the dimension of atomic mass and are

therefore relatable to y through z, which may be thought of as re-

lating to the effectiveness with which dissimilar masses accept ki-

netic energy. But in this model, this energy must be positive, be-

coming least in the "equipoise" compounds NaF, KC1, RbBr, and CsI.

It is very doubtful if the source of the negative values for z in

the Ireponderance of these expressions can result from faulty data.
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Table 2

Empirical Constants in Expressions Relating Atomic Densities

and Melting Points to Z, W, and mf for the Monohalide Salts

Atomic Density x y yz z LogC -x/(y+yz)

I-A Chlorides -15.371 13.978 -.523 -.0374 2.02604 1.1424
Bromides -6.186 5.235 .0747 .0143 -.05202 1.1649
Iodides 5.935 -4.570 .2062 -.045 1.02250 1.3599
Fluorides 9.762-12.587 3.960 -.3146 5.35856 1.1316

I-B Chlorides 1.747 -3.605 2.087 -.5789 2.78828 1.1506
Bromides 6.069 -5.660 .013 -.0026 1.98636 1.0747
Iodides 10.328 -9.570 .315 -.0329 2.54634 1.1160

(11.216-10.375 .420 -.0405 2.61314 1.1267)

Melting Point

I-A Chlorides 5.596 -5.242 .157 -.0300 4.18948 1.1006
Bromides 3.368 -3.127 -.011 .06035 3.73829 1.0733
Iodides 7.331 -7.094 -.072 .0102 5.27395 1.0229
Fluorides 1.898 -2.066 .264 -.1280 3.73739 1.0534

I-B Chlorides 3.353 -5.577 2.094 -.3754 6.21451 0.9627
Bromides 12.302-12.334 .194 -.0157 7.19884 1.0133
Iodides 6.963 -7.754 -.309 .0398 7.33380 0.8637

Cursory examination of the above expressions indeed shows a

trend in the values for x and y with regard to the atomic density

equations for both A and B halides, and clearly this trend does not

permit consideration of the fluorides as preceding the chlorides.

Unfortunately, no similar trend is observed for melting points.

Were all z values of the same sign a simple remedy could be

found. That they are not demands that a more acceptable form be used

for describing the change in mass-momentum resulting from the presence

of widely dissimilar masses.

Some foreshadowing of a probable cause can be seen in the PE

values of Table 1; of the halite structures, nearly all are within

one percent of the ideal 52.37 value. The exceptions are overpacked

LiI and very much underpacked CsF, and without further evidence one

might suggest that these are opposite ends of the spectrum of per-

mitted radius ratios. But NaF is also significantly overpacked, yet

lies near the center of the range of radius ratios1 .

It was not until comparatively recently that the atomic masses

were given credence in such inquiries. Taking the heavier atom as

dominant in determining permissible frequencies, one sees that in

LiI and CsF this dominance is in one the halogen and the other the

metal, and since the packing efficiencies differ on opposite sides
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of the ideal, one is forced to recognize the need for explaining them

and compensating for them.

In the sense that the atomic density is itself based upon the

real solid rather than an ideal model, its value in practical usage

would indeed be enhanced by an example of deriving from it information

needed to reconcile some of the discrepancies noted. The alkali halides

provide an unequalled opportunity for such an example.

It had been recognized1 that in few of the alkali halides was the

radius ratio RM/RX small enough so that overlap repulsion between anions

is the principal determinant of interatomic distance; it appears from

the PE data that only in LiI and perhaps LiBr doeas this situation exist.

In the remaining monohalides, the radius ratio approaches and may per-

haps exceed unity so that ADc is determined in the halite structure by

the attraction-repulsion balance in the direction of the cubic axis.

It has been amply demonstrated, however, that the ADc values ob-

served do not accord with the theory that the atoms are, for a given

element, spheres of inalterable dimensions; the effective radius of Na,

for example is changed if it is moved from an array of C1 atoms into

one of I atoms.

The usual and cogent arguments regarding electronegativity and

changing ionicity-covalency in the salt are inappropriate in this study,

the purpose of which is not to explain by theory but to demonstrate

factual relations. It suffices here to note that a mathematical relation

can, for example, be precisely drawn to describe N in terms of four con-

stants for a given subgroup of four species, but unless this expression

also permits equally accurate correlation with another, or with a fifth

subgroup member, its development is merely an exercise in arithmetic.

Since atomic density changes as a function of temperature, it is

not perhaps surprising that such correlation can be observed between

the melting point and Debye temperatures. In such cases, the atomic

density is merely used as an intermediary characterizing parameter to

be excluded later. It seems highly desirable to utilize some other pro-

perty, obtained, like N, at room temperature. For the example shown

here, this property will be the elastic constant E.

RELATIONS WITH E, MP, AND N AND x, y, and z FOR SELECTED HALIDES

A substantial portion of the illustrative example to be described

here was, because of its speculative nature, performed without charge

to this project; it is reported in some detail here to illuminate the
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kind of approach which ought to be carried out by computer means.

It is clear from the expressions of Table 2 that both Z and

mf are inadequate to the task. Each will be briefly discussed.

ATOMIC NUMBER AND THE PERIODICITY FUNCTION AS PARAMETERS.

Scanning the Z values given in Table 1 one observes that the

difference in Z between fluoride and chloride is always 4, half

that of the remaining differences. Yet the difference in N, MP, and

E between fluoride and chloride is usually most impressive of the

series, and as a result the value of x (and y since W bears a rough

relation to Z) is most strongly affected by the property of the Li

salt.

The usefulness of n, here termed the periodicity function for

an element or salt, was demonstrated in the discussions regarding

the Hume-Rothery expression and extending a modification of it to

the melting and boiling points of the inert gas elements and the

elastic constant Cll of the body-centered cubic transition metals

in Report No. 1.

In the fully ionic fluorides, the ion can be described as one

which comprises the characteristic nucleus of the metal or halogen

external to which is the typical electronic configuration of the

inert gas. In the dissimilar pair Na-F this configuration is that

of Ne, in K-C1 it is that of Ar, in RbBr that of Kr, and in CsI that

of Xe.

Since these "equipoise" compounds not only are distinguished

by commonality of inert gas configuration but nearly the same atomic

weight for each constituent, one might expect them to differ in some

properties quite markedly from the remaining halides, but apart from

the high melting point of NaF and the low density of KC1, such

differences are not observed. The answer might lie in the fact that

the balance between attractive and repulsive forces are here most

nicely observed.

It follows that instead of the atomic number Z, a better yard-

stick would be a simple periodicity function such as n . Earlier

work suggested simple integers 1, 2, 3.. for Ne, Ar, Kr... and these

have been used somewhat arbitrarily here. As a result the value of

the yardstick between Ne and Ar has been increased to equal that for

Ar-Kr.

The objection that on this scale there are a different number
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of elements intervening is not particularly important so long as the

atomic weight W is included as a characterizing parameter. One can

either regard, among the alkali halides, the value of n for KBr as

2.5 because it is a Law of Mixtures mean for the n values of Ar and

Kr or use the more complex but more universally applicable basis of

counting the change in n in units of 1/18, so that KBr involves the

mean of the sum 2.0555.. for K and 2.94444.. for Br.

For Li and Na, there is, and until future attention can be

properly paid to it, some doubt as to the proper values for n ; it

should be quite clear that He cannot have the value of zero and

hence that values for Na and Li should be slightly higher than

shown. At this time, however, one can accept the small penalty of

absolute inaccuracy for the reward of being able to accept Na salts

into the alkali metal subgroup and fluorides into the halogens.

In order to do this, one must simultaneously choose and test

some expression of the mass factor which will be more sensitive than

mf as the energy-absorbing mechanisms related to dissimilar masses.

THE MASS FACTOR AS A PARAMETER

It has become quite clear that in compounds one cannot merely

choose the difference between atomic masses as a guide to the mass

momentum effect; the difference is itself an expression of mass and

therefore affects the exponent y; moreover, where the difference is

very large (as with LiI or CsF) it is clear that an inordinate weight

for it is implied in the derived equation.

It was accordingly decided to utilize a dimensionless term f

to replace mf in the general expression and inquire into the equa-

tions of certain subgroups among' the alkali metal halides. In order

to clarify doubts as to the identity of the lighter atom while under

the constrictions of logarithmic expression, the first step was

undertaken-because of the following facts:

In all Li salts, WLi ismless than WX (the hydride excepted)

In all iodides except CsI, WM is less than WI,

and these two subgoups can therefore represent those salts in which

the cation is the lighter. Also,

In all Cs salts, WCs is more than W
X
, and

In all fluorides except LiF, WM is more than WF , and these

two subgroups can be used to represent salts with heavier cations.

Since, in general the heavier atoms are also larger, the latter

group also represents those of larger radius ratio RI/R X.

The simplest means for describing the factor f in dimensionless
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terms is: f = (WX - WM)/ W ;these are given in Table 1 without sign.

For the general equation: Log P = x Log n + y Log W + yz Log f + LogC,

the values shown below have been derived.

x y yz Log C z

Li salts (N) - 1.94586 0.515120 0.980563 -0.04042- 1.90356
(E) - 2.64884 .664625 1.43909 - .35566 2.16527
(MP)- 0.83978 .151898 .68765 2.68765 4.52707

Iodides (N) - 8.93259 29.18952 5.95098 -51.54422 .20387
(E) -18.19921 11.44106 56.328197 -99.11624 .20311
(MP)- 8.93259 8.04043 37.67939 -65.33441 .21339

Cs salts (N) 0.44166 0.682411 0.042704 1.55381 - .06258
(MP)- 0.31509 .174708 .003949 2.77706 .02260

Fluorides (N) - 4.04921 .988590 .679624 .08664 .68747
(MP)- 0.09181 -.147838 .002303 3.29505 - .01558

In the metal-lighter (and smaller) salts the signs of x, y,

yz and of course z are consistent throughout, and the exponents for

E are larger than for N and MP in the Li salts, but this applies

only to x and yz in the iodides. Values of z vary widely in the Li

salts and are nearly constant in the iodides.

In the metal-heavier salts (for which data for E are lacking),

the consistency in sign is lacking, although all yz values are

positive throughout. Exponent values are much more consistent among

the Cs salts than the fluorides.

From these data, one can justify the expectation that the

magnitude of the mass factor effect will differ between metal-light

and metal-heavy salts. An attempt was made to "predict" the missing

value of E for CsF through its yalue of y Log f in the fluorides

expression for N and its value of z from the Cs salts expression;

the value is 2.568 GPa . An attempt to "predict"the value of N for

CsI in a similar manner failed.

The values appropriate to all of these compounds appear to

depend upon both better values for n and for f. A final attempt to

initiate this was made in the following way.

EXPRESSIONS FOR MP AND N IN THE EQUIPOISE SALTS.

Thus far, each subgroup has consisted at most of four species,

and one must rely on inspection of the completed expressions to esti-

mate their credibility. With serious doubts about the values of f for

all salts and of the appropriate values of n for Li (and perhaps Na)

salts, a sizable regression program would be required for any but a

serendipitous inquiry.
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The matrix diagram shown here suggests a method of prelimin-

ary inquiry. The normal matrix of five metals and five halogens has

been modified by including LiH as the only "halide" in which that

metal is the heavier. Two values for f are shown for each salt, the

first being that of Table 1, the parenthetical value being obtained

from: f = (WX - WM)/ W1 , W1 being the atomic mass of the lighter

element.

Li Na K Rb Cs

-1.4926
(-6.0825)

.9299 -.1901 -.6920 -1.2726 -1.4997
(1.7379) (-.21009)(-1.0582) (-3.4988) (-5.9956)

1.3452 .42651 -.0979 -.8273 -1.1577
(4.1092) (.54212) (-.1028)(-1.4108) (-2.7488)

Br 1.6804 1.1063 .6858 -.06725 -.4980
(10.5159) (2.4758) (1.0436) (-.06959) (-.6632)

1.7926 1.3864 1.0578 .3902 -.04619
(17.2855) (4.4200) (2.2456) (.4848) (-.04729)

The contours of this matrix can be described as being dominated

by a trough of lowest values for the five "equipoise" salts LiH, NaF,

KCl, RbBr, and CsI. From this trough the values of f rise in moving

toward LiI and also rise (negatively) in moving toward CsF.

The addition of LiH to the series does not improve the credi-

bility of the Li salts expressions given earlier, since it is a

metal-heavier compound. It can, however, be examined as a member of

the equipoise salt series in the following way. The expressions for

these using the normal values of f are:

Log N = -2.753604 Log n + .597441 Log W - .979611 Log f -.59278

and Log N = -2.886996 Log n + .627678 Loh W -1.01650 Log ft -.615256

when the values for f' are the parenthetic ones shown above. One can

then solve for the value of n for LiH assuming other n values are as

shown in Table 1. It will be quite clear that nHe cannot be zero; the

above simple approximation suggests nLiH to be 0.1772 for the first,

and 0.1828 for the second. Note that these values would be slightly

higher if nNaF is slightly greater than unity, as suggested by the

inert gas solids relation.

At this time, one can merely find some satisfaction in that the

suggested values for nLiH are reasonable. A greater degree of confi-

dence must await the final selection of the term f.

In the above matrix, it will be observed that the range of ft
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(from highest to lowest value regardless of sign) is far greater for

Li than for the remaining salts. Perusal of the data for N, MP, and E

in Table 1 shows a similar trend, and it appears that the use of f'

values will permit more tractable expressions to be derived.

Even with Z and f values, however, the mass factor term

suffices to reconcile all observed anomalies. The very small difference

in MP for KBr and KI has been noted. In the form:

MP = C , Zx x WY x fyz if z

KF 1154 680.6 1652.4 2791 1.0035 .002265
KC1 1048 " 3353.2 5074 1.0161 "
KBr 1003 " 10477 15285 1.0069 .004812
KI 996 " 23421 33505 1.0232 "

which suggests that the value of z for the metal-lighter salts is of

the order of twice as effective as that for the metal-heavier salts.

Such observations, however, must be subjected to closer scrutiny

among a number of alloys and compounds. Within carefully restricted sub-

groups, however, one can begin to pursue the ultimately rewarding

course of eliminating unknown or difficultly measurable parameters. In.

the two similar equations for the equipoise compounds on the pre-

ceding page one derives simply: Log N = .7888Log n -. 2055 LogW + .00409 

it is these simpler expressions which will serve to determine both

ideal behavior and the causes for deviation from it.

SUVMARY

Using the monohalide salts with particular emphasis on the

halides of the alkali metals, the unsatisfactory usage of atomic number

Z as a principal determinant in compounds has been tentatively replaced

by a "periodicity factor" n which has, for the alkali halides, a value

equal to the mean n-values of the inert gas configurations represented

by their ions. (n for the inert gases is one less than the principal

quantum number of the outermost filled shell). By comparison with LiH,

a tentative value for nile of about 0.18 was derived.

Using the dimensionless mass factor : f = (WX - WM) / W and

taking care to treat separately those subgroups in which the metal atom

is lighter (Li salts and iodides except CsI) and those in which it is

the heavier (Cs salts and fluorides), mathematical expressions of the

form: P = Log nx + Log Wy + Log fYZ were carried out. Large and

apparently meaningless variations in the several equation parameters

which had been apparent with Z and mf terms were found to be consider-

ably reduced, and it is now believed possible to develop an expression

for f in which the values of z will be substantially constant for a
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given property. These expressions, since they utilize the periodicity

factor rather than Z, permit the subgrouping of Na with the I-A metals,

F with the remaining halogens, and do not require (at least in these

salts in which CsC1, CsBr, and CsI exhibit a structure quite different

from the remaining ones) correction to a common coordination.

Anomalies such as the overpacking of LiI and CsF were found to

relate to extremes in metal-lighter and metal-heavier compounds, each

of which will probably require a characteristic value of z.

Of the "equipoise" compounds in which the constituent atoms are

almost the same in atomic mass, NaF and LiH demonstrate (by melting

point and slight overpacking) that the greatest sensitivity of the

mass factor to the mass ratio itself occurs when such a balance is

nearly achieved; at the same time this sensitivity is greatly lowered

if either atom is very heavy. Accordingly,,.the atomic weight W must

continue to be included in the expression.

Trials for more sensitive forms of the mass factor f have in-

cluded one one in which the mean atomic weight W is replaced by that

of the lighter component.

In view of the necessity for regarding every property value as

precisely known, expressions were, where data permitted, drawn for

the atomic density N, the principal elastic constant E, and the

melting point IP. As expected from their common temperature of

measurement, expressions for N and E were most nearly the same. Al-

though some of these preliminary expressions are formidable in ap-

pearance they can easily be modified and combined to produce accurate,

if not yet generalizable, relations among a few of the important pro-

perties of a material. To the extent that some of these relations

clearly indicate invalid data points they are immediately useful.

CONCLUSIONS AND RECOMMENDATIONS

As this largely exploratory phase approaches its end one observes

that the atomic density N is indeed a useful and tractable characterizing

parameter. Like all such it cannot stand alone. Among the elemental

solids studied it has proved invaluable in the discovery that a small

but real (1-6%) influence on such properties as density, melting point,

Debye temperature, and elastic constants is exerted by the proportion

and masses of their isotopic contents, and this influence in poly-

isotopic elements is inadequately represented by a Rule of Mixtures

solution. That different isotopes of an element will exhibit measur-
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ably different properties has long been known and is particularly

apparent in isotopes of the lighter elements. That interactions

among them apparently suffice to account for appreciably larger

differences is a novel conclusion, unexplainable in terms of spin

parameters or electronic configuration in the heavier elements.

If such effects are measurable in polyisotopic elements they

are surely notable in compounds. An investigation of a number of

monoxides followed by a more detailed study of the alkali halides

confirm this conclusion, and suggest that this approach be used

for a wider range of well-characterized compounds, a few alloys,

and involving other properties.

The choice of elemental subgroups used in the derivation of

empirical compounds was dictated by the Periodic Table, so that

only in the III-A elements and lanthanons was it possible to ex-

tend the subgroup population above the minimal number of four. A

modest modification of the Table was shown capable of achieving

credible expressions for the I-IV-A and -B elements, but it was

noted that this change should not persist into ionic compounds

in which the principal bonding mechanism is electrostatic attrac-

tion. Finding that it did indeed persist, the writer perceived

that the problem might well lie in the selection of the atomic

number, which describes the total electron population, rather

than the periodicity, which describes the recurrence of valence.

A number of earlier studies had suggested that this periodicity

factor was well served by consecutive integers for elements

heavier than C1. It may be concluded, within the limitations of

a single study of the alkali halides and LiH, that either the

periodicity factor, n, or a modification of the atomic number

Z to accord with the number of external electrons of the He and

Ne "cores" can be used to develop exact expressions. The latter

method had already been applied to post-lanthanon metals with

good success.

The body of knowledge of materials properties being great-

est at room temperature and atmospheric pressure, virtually all

atomic densities considered thus far relate to these conditions.

The writer makes no claim to superior judgment in his selection

among data available in compendia and selected papers. It is a

sincere tribute to note that most reported data have been more

K\
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accurate than generally supposed. This appears also to be true of

many real density values, a large number of which have been ir-

remediably rounded off before publication.

Recommended future work includes:

1. Continuation of the detailed study of the alkali halides,

broadened to include Nail and the halides and hydride of 6 Li (or

Li relatively high in this isotope). In addition to referee-quality

densities and observed interatomic distances, the following pro-

perty data are needed: RT bulk modulus and elastic constants, co-

efficient of thermal expansion, dielectric constant, refractive

index and transmission limits; real density and lattice dimensions

at elevated temperatures to melting point.

2. Initiation of a study of the sesquioxides, particularly

those of the lanthanons. Principal data requirements include real

density, lattice dimensions, melting point, and refractive index.

Single-crystal data are preferred, but hot-pressed specimens can

be used if stoichiometry is preserved. Over thirty of these oxides

exist.

3. Preliminary study of the transition metal oxides, density,

melting point, and RT bulk modulus being the minimal data sought.

4. Several alloy specimens of known composition and density

and melting points from each of two systems: a binary alloy which

conforms to Vegard's rule and another (preferably containing a

common element with the first) which does not. Suggested are the

Cu-Pd and the Cu-Ni-Zn systems.

5. In this and earlier reports the writer has suggested that

a simple computer program be developed and used to generate ex-

pressions which can be used to test values for n and f. Once these

are known the work can be carried out with greater confidence, and

the the mechanism and meaning of them be attacked by theoreticians.

Respectfully submitted

Pricipal Investigator


